SPECIFICATIONS

WF132TU02 5¹/₄" die cast mid/woofer, 4 ohm, automotive

WF132TU02 is a mid/woofer designed for demanding bass and midrange applications. It works equally well for most applications but was designed especially for automotive high-end sound systems. The very rigid die cast alu chassis follows the common standard dimensions for easy installation in cars.

FEATURES

- Very rigid die cast alu chassis to withstand challenging car applications
- Built-in alu field-stabilizing ring for reduced high-level distortion
- Vented voice coil former and magnet pole for reduced distortion and compression
- Vented chassis for lower air flow speed reducing audible distortion
 Heavy-duty black fiber glass voice coil bobbin to increase power handling and reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor system with 1^x voice coil diameter and large 90 mm magnet for better control, power handling, and efficiency
- Linear suspension with specially designed Conex damper (spider) for long durability under extreme operating conditions
- Gold plated terminals to prevent oxidation for long-term reliable connection important in a car environment

NOMINAL SPECIFICATIONS

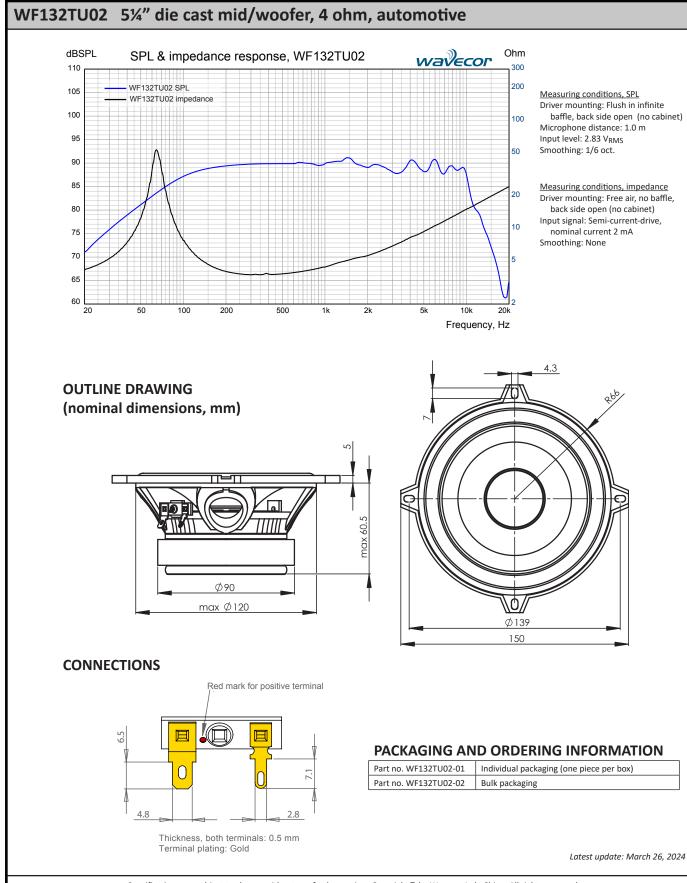
Notes	Parameter	Before burn-in	After burn-in	Unit
	Nominal size	5¼		[inch.]
	Nominal impedance	4		[ohm]
	Recommended max. upper frequency limit	4		[kHz]
1	Sensitivity, 2.83V/1m (average SPL in range 200 - 1,000 Hz)	90		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering			[W]
2	Power handling, long term, IEC 268-5, no additional filtering			[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	55 95		[W]
	Effective radiating area, Sd			[cm ²]
3, 6	Resonance frequency (free air, no baffle), Fs	62		[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	10.0		[g]
3	Force factor, Bxl	6.2		[N/A]
3, 6	Suspension compliance, C _{ms}	0.66		[mm/N]
3, 6	Equivalent air volume, V _{as}	9.0		[lit.]
3, 6	Mechanical Q, Qms	8.0		[-]
3, 6	Electrical Q, Qes	0.46		[-]
3, 6	Total Q, Qts	0.44		[-]
4	Voice coil resistance, R _{DC}	3.2		[ohm]
5	Voice coil inductance, Le (measured at 10 kHz)	0.23		[mH]
	Voice coil inside diameter	32		[mm]
	Voice coil winding height	11		[mm]
	Air gap height	5		[mm]
	Magnet weight	400		[g]
	Total unit net weight excl. packaging	1.08		[kg]
3, 5	K _{rm}	0.13		[mohm]
3, 5	Erm	0.99		[-]
3, 5	K _{xm}	4.2		[mH]
3, 5	Exm	0.71		[-]

Note 1 Measured in infinite baffle.

Note 2 Tested in free air (no cabinet).

Note 3 Measured using a semi-constant current source, nominal level 2 mA.

Note 4 Measured at 20 deg. C


Note 5 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{rm}, E_{rm}, K_{xm}, and E_{xm}. This more accurate transducer model is described in a technical paper here at our web site.

Note 6 After burn-in specifications are measured 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10 V_{RMS}. The unit is not burned in before shipping.

Specifications are subject to change without any further notice. Copyright© by Wavecor Ltd., China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**

SPECIFICATIONS

Specifications are subject to change without any further notice. Copyright© by Wavecor Ltd., China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit **www.Wavecor.com**