SPECIFICATIONS

WF166TU02 6½" die cast car woofer, 4 ohm

WF166TU02 is a mid/woofer designed for demanding bass and midrange applications. It works equally well for most applications but is designed especially for automotive high-end sound.

The optimized paper cone ensures wide bandwidth and low distortion. Distortion is further reduced by efficient venting and a separate alu field-stabilizing ring.

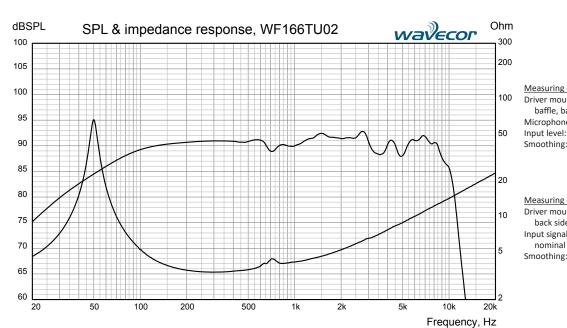
WF166TU02 is a good choice for 2-way car speaker systems.

FEATURES

- Very rigid die cast alu chassis
- Built-in alu field stabilizing ring for reduced high-level distortion
- Vented voice coil former and magnet center pole for reduced distortion and compression
- Vented chassis for lower air flow speed reducing audible distortion
- Heavy-duty black fiber glass voice coil bobbin to increase power handling and reduce mechanical losses resulting in better dynamic performance and low-level details
- Large motor system with 1¼" voice coil diameter and large 90 mm magnet for better control and efficiency
- Linear suspension with specially designed CONEX damper (spider) for long durability under extreme operating conditions
- Gold plated terminals to prevent oxidation for long-term reliable connection important in a car environment

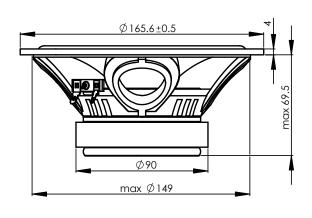
NOMINAL SPECIFICATIONS

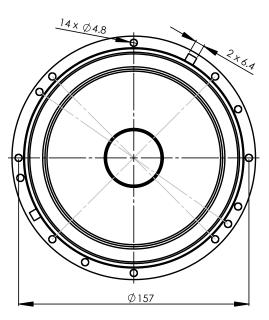
Notes	Parameter	Before burn-in	After burn-in	Unit
	Nominal size	6½		[inch.]
	Nominal impedance	4	1	[ohm]
	Recommended max. upper frequency limit	3.	.5	[kHz]
1, 5	Sensitivity, 2.83V/1m (average SPL in range 300 - 1,000 Hz)	91		[dB]
2	Power handling, short term, IEC 268-5, no additional filtering			[W]
2	Power handling, long term, IEC 268-5, no additional filtering			[W]
2	Power handling, continuous, IEC 268-5, no additional filtering	60		[W]
	Effective radiating area, Sd	139		[cm ²]
3, 5, 7	Resonance frequency (free air, no baffle), Fs	50		[Hz]
	Moving mass, incl. air (free air, no baffle), Mms	12.5		[g]
3	Force factor, Bxl	5.0		[N/A]
3, 5, 7	Suspension compliance, Cms	0.81		[mm/N]
3, 5, 7	Equivalent air volume, Vas	22.3		[lit.]
3, 5, 7	Mechanical resistance, Rms	0.40		[Ns/m]
3, 5, 7	Mechanical Q, Qms	9.8		[-]
3, 5, 7	Electrical Q, Q _{es}	0.50		[-]
3, 5, 7	Total Q, Qts	0.48		[-]
4	Voice coil resistance, RDC	3.2		[ohm]
6	Voice coil inductance, Le (measured at 10 kHz)	0.23		[mH]
	Voice coil inside diameter	32		[mm]
	Voice coil winding height	11		[mm]
	Air gap height	5		[mm]
	Magnet weight (dual neodymium)	400		[g]
	Total unit net weight excl. packaging	1.15		[kg]
3, 6	Krm	109		[µohm]
3, 6	Erm	0.97		[-]
3, 6	K _{xm}	2.04		[mH]
3, 6	Exm	0.79		[-]


- Note 1 Measured in infinite baffle.
- Note 2 Tested in free air (no cabinet).
- Note 3 Measured using a semi-constant current source, nominal level 2 mA.
- Note 4 Measured at 20 deg. C
- Note 5 Measured at 25 deg. C
- Note 6 It is generally a rough simplification to assume that loudspeaker transducer voice coils exhibit the characteristics of an inductor. Instead it is a far more accurate approach to use the more advanced model often referred to as the "Wright empirical model", also used in LEAP-4 as the TSL model (www.linearx.com), involving parameters K_{rm}, E_{rm}, K_{xm}, and E_{xm}. This more accurate transducer model is described in a technical paper <u>here at our web site</u>.
- Note 7 After burn-in specifications are measured at least 12 hours after exiting the transducer by a 20 Hz sine wave for 2 hours at level 10 VRMS. Units are not burned in before shipping.

Specifications are subject to change without any further notice. Copyright© by Wavecor Ltd., China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit <u>www.Wavecor.com</u>

SPECIFICATIONS

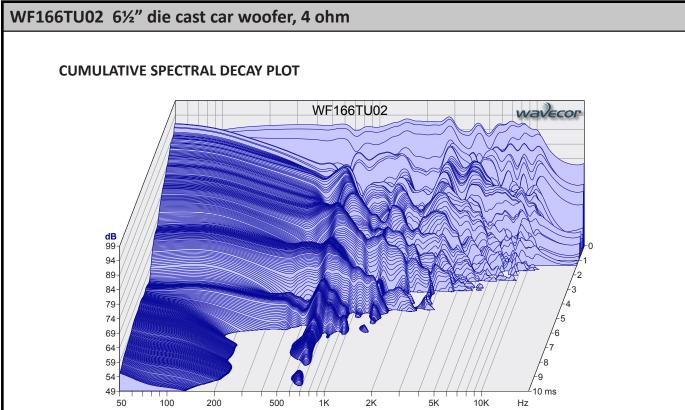


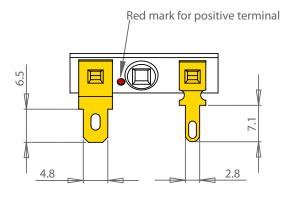


Measuring conditions, SPL Driver mounting: Flush in infinite baffle, back side open (no cabinet) Microphone distance: 1.0 m Input level: 2.83 V_{RMS} Smoothing: 1/6 oct.

Measuring conditions, impedance Driver mounting: Free air, no baffle, back side open (no cabinet) Input signal: Semi-current-drive, nominal current 2 mA Smoothing: None

OUTLINE DRAWING (nominal dimensions, mm)




Specifications are subject to change without any further notice. Copyright© by Wavecor Ltd., China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit <u>www.Wavecor.com</u>

SPECIFICATIONS

CONNECTIONS

Thickness, both terminals: 0.5mm Terminal plating: Gold

PACKAGING AND ORDERING INFORMATION

Part no. WF166TU02-01	Individually packaged (one piece per box)
Part no. WF166TU02-02	Bulk packaging

Latest update: March 26, 2024

Specifications are subject to change without any further notice. Copyright© by Wavecor Ltd., China. All rights reserved. Wavecor® is a registered trademark of Wavecor Ltd. For more information please visit <u>www.Wavecor.com</u>