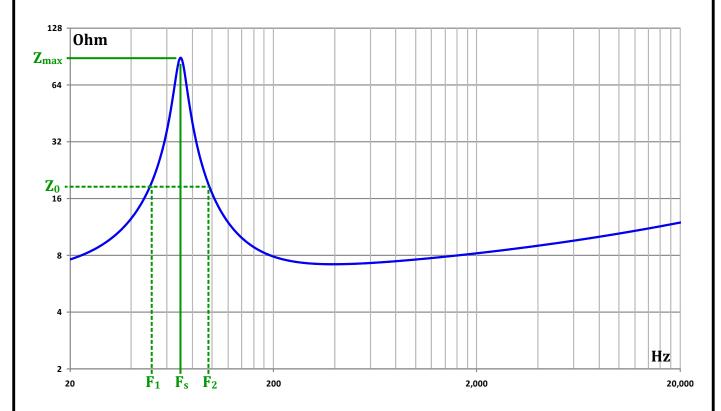
Measuring/calculating driver Q values using the impedance curve

R_e DC resistance of driver

F_s Resonance frequency of driver


Z_{max} Impedance at F_s

 Z_0 Calculated impedance level for reading F_1 and F_2

F₁ Lower frequency where Z=Z₀
F₂ Upper frequency where Z=Z₀

 Q_{ms} Mechanical Q of driver Q_{es} Electricaal Q of driver

Qts Total Q of driver

Qms

Step 1. Measure R_e of the driver

Step 2. Read the values $F_{s}\, \text{and}\, Z_{\text{max}}$ from the impedance curve

Step 3. Calculate Z_0 as $\,Z_0 = \sqrt{R_e \times Z_{max}}\,$

Step 4. Read the values F_1 and F_2 from the impedance curve

Step 5. Calculate Q_{ms} as $Q_{ms} = \frac{F_{s}}{(F_{2} - F_{1})} \times \sqrt{\frac{Z_{max}}{R_{e}}}$

<u>Qes</u>

Calculate
$$Q_{es}$$
 as $Q_{es} = \frac{Q_{ms}}{\frac{Z_{max}}{R_o} - 1}$

<u>Qts</u>

Calculate
$$Q_{ts}$$
 as $Q_{ts} = \frac{Q_{ms} \times Q_{es}}{Q_{ms} + Q_{es}}$